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Motivation 

• Feedback cycle between liquid rocket engine (LRE) combustion chamber pressure 
perturbations and unsteady combustion1,2 

• Large amplitude fluctuations in pressure and combustion heat release rates  
combustion instability 

Flow 
Perturbation 

Heat Release 
Oscillation 

Pressure 
Perturbation 

1Harrje, D.T., and Reardon, F.H.. Scientific and Technical Information Office, National Aeronautics and Space 
Administration, NASA SP-194, 1972. 
2Schadow, K.C., Gutmark, E., Parr, T.P., Parr, D.M., Wilson, K.J., and Crump, J.H.. 19th AIAA Fluid 
Dynamics, Plasma Dynamics and Lasers Conference, AIAA 1987-1326 
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Motivation (cont’d) 

Courtesy: U.S. Rocket and Space Center, Huntsville, AL 

Injector head 
molten after a 
combustion 
instability 
event 
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Objective 

• Impose external acoustic perturbations, and examine the response and stability 
characteristic of shear-coaxial injector flow to pressure perturbation 

Acoustic/Pressure 
Perturbation 

Shear-Coaxial 
Injector Flow 

• Investigate influence of injector geometry  on flow response to external pressure 
perturbation 

• Vary the outer-to-inner jet momentum flux ratio, J, under subcritical chamber pressure 
condition, i.e., reduced pressure Pr = 0.44 
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• Characterize mixing using dark-core length measurements 
• Apply proper orthogonal decomposition of high-speed image pixel intensity 

fluctuations to extract spatial and temporal characteristics of prevalent coherent flow 
structures 
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Schematic of Experimental Facility 
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Image of Experimental Facility 
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Additional Geometric Configurations 

SAR-thick 

LAR-thick 

SAR-thin 

LAR-thin 
Similar 

I.D. 

Similar 
I.D. 

Similar  post 
thickness 

Injector D1 D2 D3  D4 t/D1 Ao/Ai l/D1 

LAR-thick 0.51 1.59 2.42 3.18 1.05 12.9 0.5 
SAR-thin 1.40 1.65 2.44 3.94 0.09 1.6 0.5
SAR-thick 1.47 3.96 4.70 6.35 0.84 2.9 -0.1 
LAR-thin 0.70 0.89 2.44 3.94 0.13 10.6 -0.2 

SAR, LAR  Small, Large Area Ratio 
Thick, Thin  Post thickness  

Davis, Rodriguez, Leyva et al.  

All dimensions in mm 

Rodriguez, Graham et al. (l/D1 = 0)  

Present study (-0.11 D1 recess)  

Present study (-0.21 D1 recess)  
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Acoustic Field Set-Up: Pressure Antinode 

• Pressure antinode (PAN) – condition of maximum pressure perturbation in the 
acoustic field 

• Piezo-sirens forced in-phase 
• Superposition of quasi-1D acoustic waves traveling in opposite directions  PAN at 

the jet location (geometric center of test section) 
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Dark-Core Length Measurement 

L 

• First raw grayscale images were converted to binary images 

• A contour was drawn around the “dark-column” in the binary image 

• Axial length of the dark-column measured and defined as the Dark-Core Length, L 

Grayscale (8-bit) 
Raw Image 

Binary Image Raw Image w/ 
Contour 
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Baseline Dark-Core Lengths 
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Proper Orthogonal Decomposition 

• Proper Orthogonal Decomposition (POD) or Principal Component Analysis 
(PCA) was used for extracting dominant dynamical processes embedded in high-
speed images.  

• A time-resolved set of images A(x,t) can be represented as a linear combination 
of orthonormal basis functions k (aka proper orthogonal modes)1,2,3 :   

1
( , ) ( ) ( )

M

k k
k

A x t a t x

where ak(t) are time dependent orthonormal amplitude coefficients and M is the 
number of modes 

• Main idea: POD modal amplitudes capture the maximum possible “energy” in 
an average sense4, i.e.,  

where bk(t) are the temporal coefficients of a decomposition with respect to an 
arbitrary orthonormal basis k.  

( ) ( ) ( ) ( )k k k k
k k

a t a t b t b t

1 Chatterjee, A. Current Science, Vol. 78, No. 7 (2000) 
2 Arienti, M, and Soteriou, M.C.. Phys. Fluids 21, 112104 (2009) 
3 Narayanan,V., Lightfoot, M.D.A, Schumaker, S.A., Danczyk, S.A., and Eilers, B.. ILASS Americas, 2011 
4 Berkooz, G., Holmes, P., and Lumley, J.L.. Annu. Rev. Fluid Mech. 25. 539 (1993)  
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Construction of Data Set 

• First, form  a row vector consisting of all pixel intensity values of each 
snapshot image (with resolution of n rows by m columns) in order of increasing 
columns, then increasing rows 

Pixel 
Intensity 

N 
frames 

n 
rows 

m  
columns 

A = 
N time  
steps 

P = n × m  
pixel intensities 

• Then, combine all such row 
vectors for N sequences of image 
frames resulting in a matrix A 
consisting of N rows by P = n × m 
columns of intensity values.  

Image Frame 
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Orthogonal Decomposition Technique 

• Eigenvalue decomposition or singular value decomposition (SVD) can be used 

• SVD preferred since 
1. Applicable to non-square matrices (most likely the case) 
2. Decomposition matrices are orthogonal 
3. Subroutine readily available in MATLAB® 

• Subtracted temporal mean of A  matrix of intensity fluctuations Ã 

• Applied SVD 
TT QVUSVÃ

N × N  
Orthogonal Matrix of Left 

Singular Column Vectors of Ã   

N × P 
Orthogonal Matrix of Right Singular 

Column Vectors of Ã proper 
orthogonal modes  (POM) 

N × N  
Diagonal Matrix of 

Singular Values  

Columns of Q ~ ak(t) contain temporal information 
Columns of V ~ k(x) contain spatial information 
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Results – Subcritical Baseline at Low J 

• LAR, Pr = 0.44, J = 0.5 
POM 2 POM 1 Average Snapshot 

Power Spectral 
Densities (PSD) 
of Temporal 
Coefficients of 
POMs 1 and 2 

Amplitude information 
contained in singular values 

2 
1 

Antisymmetric Structures 
Identified with Characteristic 

Frequencies 
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Results – Subcritical PAN at Low J 

POM 2 POM 1 Average Snapshot 

• LAR, Pr = 0.44, J = 0.5, forcing Frequency, fF = 3.14 kHz 

Symmetric Structures 
Identified with Characteristic 

Frequency at fF 



16 Distribution A: Approved for Public Release; Distribution Unlimited 

Cross-Power Spectral Density (CPSD)  

• CPSD yields the FFT of the cross-correlation of  the temporal coefficients 

Baseline 
PAN  

(fF = 3.14 kHz) 
LAR, Pr = 0.44, J = 0.5 

-90o Phase Difference 
Confirmed Downstream 

Propagating Flow 
Structures 

Baseline Spectrum 
Completely Removed in 
PAN Forced Spectrum 

• Magnitude and phase plots used to determine existence of propagating structures 
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Sample Animation – PAN (fF = 3.14 kHz) 

• LAR Pr = 0.44, J = 0.5 

Superposition of POMs 1 and 2 Resulted in Downstream Propagating Structures  
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Results – LAR-thin 

0 D1 

10 D1 

20 D1 

J = 2.1 J = 20 
• Antisymmetric flow structures indicated helical type flow instabilities for all J 

PAN 
(fF = 3.12 kHz) 

Baseline PAN 
(fF = 3.11 kHz) 

Baseline 
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Previous Works on Jet Instability 

• Michalke and Hermann (1982) did linear, inviscid instability analysis of a circular jet 
with coflow 

• Showed that with increasing coflow velocity, U  
– Helical disturbances more unstable than axisymmetric ones farther downstream of exit 
– Jet flow becomes less unstable, but spectrum of spatial growth rate becomes broader and the peak shifts 

to higher frequencies 
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 • Dahm et al. (1992), Wicker and Eaton (1994) conducted experimental investigation of 
large-scale vortex structures in the near field of coaxial jets 

– For outer-to-inner jet velocity ratios greater than one, found that coherent structures in the outer shear 
layer dominate those in the inner shear layer 

– At large axial distances, shear-layer vortices exhibit helical structures 

Dahm et al., JFM 1992 
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Results – SAR-thin 

0 D1 

4 D1 

8 D1 

• Helical type flow instabilities became more well-defined with increasing J 
J = 2.0 J = 17 

PAN 
(fF = 2.97 kHz) 

Baseline PAN 
(fF = 2.90 kHz) 

Baseline
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Results – SAR-thick 

• Helical type flow instabilities became more well-defined with increasing J 
J = 2.1 J = 21 

PAN 
(fF = 3.07 kHz) 

Baseline PAN 
(fF = 3.11 kHz) 

Baseline
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Summary and Conclusions 

• Examined the effect of different exit geometries on the mixing characteristics as well 
as the behavior of flow disturbance structures with and without transverse acoustic 
forcing  -- mixing not only depends on momentum flux ratio! 

• Proper orthogonal decomposition of high-speed image intensity fluctuation data 
revealed key spatial and temporal characteristics of flow structures 

• Low J, SAR injector flows, had significantly lower LB/D1 than the large area ratio 
flows  

• Low J LAR-thin injector flow showed a strong response at the PAN forcing fre-
quency while the high J appeared less responsive and retained the baseline flow 
spectral characteristic  

• SAR-thin injector flow showed strong response at the PAN forcing regardless of J  
• Low J SAR-thick injector flow showed no response at the forcing frequency, while the 

high J flow did 
• Operated at high enough J, LAR injector flows less vulnerable to external pressure 

disturbances 
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Data Summary Table 


